• Buscador
  • Contactenos
  • separador
  • SUSCRIBASE
  • Anuncios clasificados
Agrodigital

la web del campo

  • Agricultura
    • Cultivos herbáceos
    • Frutas y hortalizas
    • Vino
    • Olivar
    • Remolacha y azúcar
    • Patata
    • Arroz
    • Algodón
    • Tabaco
    • Sanidad vegetal
    • Insumos agrícolas
  • Ganadería
    • Porcino
    • Leche
    • Vacuno
    • Ovino y caprino
    • Avicultura
    • Apicultura
    • Cunicultura
    • Acuicultura
    • Ganadería
    • Alimentación animal
  • Política agraria
    • PAC
    • Política agraria España
    • Política agraria países terceros
    • OMC – Acuerdos preferenciales
    • Seguros agrarios
  • Desarrollo rural
    • Desarrollo rural
    • Regadíos
    • Mujer rural
  • Medio ambiente
    • Medio Ambiente
    • Forestal
    • Energías renovables
    • Agua y sequía
  • Alimentación
    • Alimentación
    • Producción ecológica
    • Biotecnología e I+D+i
  • Artículos
Está aquí: Home / Agricultura / Olivar / Diseñan una inteligencia artificial para identificar variedades de olivo a partir de fotos de huesos de aceituna

           

Diseñan una inteligencia artificial para identificar variedades de olivo a partir de fotos de huesos de aceituna

31/01/2024

El grupo Ucolivo, en el marco del proyecto europeo GEN4OLIVE, participa en el desarrollo de una red neuronal entrenada con la mayor base de datos fotográfica de endocarpos de olivo

El desarrollo de una ‘app’ capaz de identificar variedades de olivo a partir de fotos del hueso de la aceituna es el objetivo último de ‘OliVaR’, una red neuronal entrenada con la mayor base de datos fotográfica de endocarpos de frutos de olivo, que ha sido generada por los socios del proyecto europeo GEN4OLIVE.

El desarrollo de esta herramienta ha sido posible gracias a la labor de catalogación y documentación de cinco bancos de germoplasma de distintos países y a los avances en sistemas de inteligencia artificial. Y la Universidad de Córdoba ha jugado un papel fundamental, al ser el centro que más información ha aportado con datos de 63 variedades procedentes de su Banco de Germoplasma.

La iniciativa, que se enmarca en el proyecto europeo GEN4OLIVE de mejora del olivo, coordinado por el grupo Ucolivo de la Unidad de Excelencia María de Maeztu – Departamento de Agronomía (DAUCO), ha contado con la participación de bancos de germoplasma de olivo de Marruecos, Grecia, Italia y Turquía para reunir más de 150.000 fotos de 133 variedades de olivo de la cuenca mediterránea. El Departamento de Informática de la Universidad La Sapienza de Roma ha sido el encargado de recopilar la información y crear el algoritmo para esta herramienta, que propone un nuevo enfoque para identificar variedades y automatiza el proceso tradicional de clasificación morfológica.

Así lo explican los investigadores Hristofor Miho y Concepción Muñoz Díez, que inciden además en la precisión que ha demostrado el modelo, con en torno a un 90% de eficacia. “Se trata de un sistema de aprendizaje mediante ensayo y error, basado en ‘machine learning’, en el que entrenamos a la máquina para que aprenda a través de sus propios fallos”, afirman. Los investigadores explican que cuantas más imágenes formen parte de la base de datos, mayor eficacia tendrá el sistema. Las entidades que participan en el proyecto han acordado protocolos muy estrictos para unificar sus metodologías de trabajo y generar imágenes que permitan la optimización del algoritmo.

El resultado es una inteligencia artificial que ha demostrado ser capaz de detectar detalles morfológicos que incluso escapan al ojo humano. Después de tratar los datos, arroja una relación de las posibles variedades que tienen distintos grados de compatibilidad con la muestra fotografiada. Este sistema de ‘machine learning’ será la base de una aplicación que va a permitir a agricultores o viveristas identificar de manera fácil y rápida la variedad de olivo con la que trabajan. Desde Ucolivo aseguran que, al ponerla a disposición de todo el sector como una herramienta pública y gratuita, contribuirá además “a avanzar en el conocimiento general de todas las variedades de olivo existentes”.

Hristofor Miho; Giulio Pagnotta; Dorjan Hitaj; Fabio De Gaspari; Luigi Vincenzo Mancini; Georgios Koubouris; Gianluca Godino; Mehmet Hakan; Concepción Muñoz Diez. “OliVaR: Improving olive variety recognition using deep neural networks”, Computers and Electronics in Agriculture, 216. Received August 2023; Received in revised form November 2023; Accepted December 2023. https://doi.org/10.1016/j.compag.2023.108530

Política de comentarios:
Tenemos tolerancia cero con el spam y con los comportamientos inapropiados. Agrodigital se reserva el derecho de eliminar sin previo aviso aquellos comentarios que no cumplan las normas que rigen esta sección.

Escriba un comentario: Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Lo último sobre OLIVAR

  • La campaña de la aceituna de mesa alcanza su ecuador con un 7% menos de producción prevista 24/10/2025
  • La sequía y las altas temperaturas reducen la previsión de aceite de oliva a 1,3 M t 22/10/2025
  • La Unión Extremadura denunciará a ACENORCA por presunto fraude en su Consejo Rector 20/10/2025
  • Andalucía lidera las exportaciones españolas de aceite de oliva con el 72% del total 16/10/2025
  • El aceite de oliva confía en el otoño para repetir los resultados de 2024/25 15/10/2025
  • UPA denuncia una “oportunidad perdida” para el sector olivarero en la campaña 2024/25 14/10/2025
  • Alertan de una drástica caída de producción y precios en el olivar extremeño 13/10/2025
  • La sequía provoca pérdidas del 70 % en la aceituna de mesa en Extremadura, especialmente en la manzanilla cacereña 10/10/2025

Política de Privacidad | Términos legales

Copyright © 2018 Agrodigital, S.L. · Todos los derechos reservados

Utilizamos cookies propias y de terceros para asegurar que damos la mejor experiencia al usuario en nuestro sitio web y obtener analítica web. Si continúa utilizando este sitio asumiremos que está de acuerdo.Estoy de acuerdo